Follow ONNX_Runtime_Perf_Tuning and introduce new args

This commit is contained in:
henryruhs 2023-06-03 02:23:48 +02:00
parent 6bd3724443
commit 8734a6c2e0
6 changed files with 48 additions and 41 deletions

View File

@ -40,14 +40,17 @@ options:
replace this face
-o OUTPUT_FILE, --output OUTPUT_FILE
save output to this file
--gpu use gpu
--keep-fps maintain original fps
--keep-frames keep frames directory
--all-faces swap all faces in frame
--max-memory MAX_MEMORY
maximum amount of RAM in GB to be used
--max-cores CORES_COUNT
number of cores to be use for CPU mode
--all-faces swap all faces in frame
--cpu-threads CPU_THREADS
number of threads to be use for CPU mode
--gpu-threads GPU_THREADS
number of threads to be use for GPU moded
--gpu-vendor {amd,intel,nvidia}
choice your gpu vendor
```
Looking for a CLI mode? Using the -f/--face argument will make the program in cli mode.

View File

@ -13,3 +13,4 @@ tensorflow==2.12.0; sys_platform != 'darwin'
opennsfw2==0.10.2
protobuf==4.23.2
tqdm==4.65.0
threadpoolctl==3.1.0

View File

@ -6,7 +6,6 @@ import sys
import shutil
import glob
import argparse
import multiprocessing as mp
import os
import torch
from pathlib import Path
@ -15,9 +14,9 @@ from tkinter import filedialog
from opennsfw2 import predict_video_frames, predict_image
from tkinter.filedialog import asksaveasfilename
import webbrowser
import psutil
import cv2
import threading
from threadpoolctl import threadpool_limits
from PIL import Image, ImageTk
import roop.globals
@ -28,30 +27,35 @@ from roop.analyser import get_face_single
if 'ROCMExecutionProvider' in roop.globals.providers:
del torch
pool = None
args = {}
signal.signal(signal.SIGINT, lambda signal_number, frame: quit())
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--face', help='use this face', dest='source_img')
parser.add_argument('-t', '--target', help='replace this face', dest='target_path')
parser.add_argument('-o', '--output', help='save output to this file', dest='output_file')
parser.add_argument('--gpu', help='choice your gpu vendor', dest='gpu', choices=['amd', 'nvidia'])
parser.add_argument('--keep-fps', help='maintain original fps', dest='keep_fps', action='store_true', default=False)
parser.add_argument('--keep-frames', help='keep frames directory', dest='keep_frames', action='store_true', default=False)
parser.add_argument('--max-memory', help='maximum amount of RAM in GB to be used', type=int)
parser.add_argument('--max-cores', help='number of cores to be use for CPU mode', dest='cores_count', type=int, default=max(psutil.cpu_count() - 2, 2))
parser.add_argument('--all-faces', help='swap all faces in frame', dest='all_faces', action='store_true', default=False)
parser.add_argument('--max-memory', help='maximum amount of RAM in GB to be used', dest='max_memory', type=int)
parser.add_argument('--cpu-threads', help='number of threads to be use for CPU mode', dest='cpu_threads', type=int)
parser.add_argument('--gpu-threads', help='number of threads to be use for GPU mode', dest='gpu_threads', type=int)
parser.add_argument('--gpu-vendor', help='choice your gpu vendor', dest='gpu_vendor', choices=['amd', 'intel', 'nvidia'])
args = {}
for name, value in vars(parser.parse_args()).items():
args[name] = value
if 'gpu' in args:
roop.globals.gpu = args['gpu']
if 'all-faces' in args:
if 'all_faces' in args:
roop.globals.all_faces = True
if 'cpu_threads' in args and args['cpu_threads']:
roop.globals.cpu_threads = args['cpu_threads']
if 'gpu_threads' in args and args['gpu_threads']:
roop.globals.gpu_threads = args['gpu_threads']
if 'gpu_vendor' in args and args['gpu_vendor']:
roop.globals.gpu_vendor = args['gpu_vendor']
sep = "/"
if os.name == "nt":
sep = "\\"
@ -77,10 +81,10 @@ def pre_check():
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), '../inswapper_128.onnx')
if not os.path.isfile(model_path):
quit('File "inswapper_128.onnx" does not exist!')
if roop.globals.gpu == 'amd':
if roop.globals.gpu_vendor == 'amd':
if 'ROCMExecutionProvider' not in roop.globals.providers:
quit("You are using --gpu=amd flag but ROCM isn't available or properly installed on your system.")
if roop.globals.gpu == 'nvidia':
if roop.globals.gpu_vendor == 'nvidia':
CUDA_VERSION = torch.version.cuda
CUDNN_VERSION = torch.backends.cudnn.version()
if not torch.cuda.is_available() or not CUDA_VERSION:
@ -98,22 +102,14 @@ def pre_check():
def start_processing():
frame_paths = args["frame_paths"]
n = len(frame_paths) // (args['cores_count'])
# single thread
if roop.globals.gpu == 'amd' or roop.globals.gpu == 'nvidia' or n < 2:
# gpu mode
if roop.globals.gpu_vendor is not None:
process_video(args['source_img'], args["frame_paths"])
return
# cpu mode
with threadpool_limits(limits=roop.globals.cpu_threads):
process_video(args['source_img'], args["frame_paths"])
return
# multithread if total frames to cpu cores ratio is greater than 2
if n > 2:
processes = []
for i in range(0, len(frame_paths), n):
p = pool.apply_async(process_video, args=(args['source_img'], frame_paths[i:i+n],))
processes.append(p)
for p in processes:
p.get()
pool.close()
pool.join()
def preview_image(image_path):
@ -194,8 +190,6 @@ def start():
if not args['output_file']:
target_path = args['target_path']
args['output_file'] = rreplace(target_path, "/", "/swapped-", 1) if "/" in target_path else "swapped-" + target_path
global pool
pool = mp.Pool(args['cores_count'])
target_path = args['target_path']
test_face = get_face_single(cv2.imread(args['source_img']))
if not test_face:
@ -241,10 +235,8 @@ def start():
def run():
global all_faces, keep_frames, limit_fps, status_label, window
pre_check()
limit_resources()
if args['source_img']:
args['cli_mode'] = True
start()
@ -291,4 +283,4 @@ def run():
status_label = tk.Label(window, width=580, justify="center", text="Status: waiting for input...", fg="#2ecc71", bg="#2d3436")
status_label.place(x=10,y=640,width=580,height=30)
window.mainloop()
window.mainloop()

View File

@ -1,8 +1,11 @@
import onnxruntime
import psutil
gpu = None
all_faces = False
log_level = 'error'
cpu_threads = max(psutil.cpu_count() - 2, 2)
gpu_threads = 8
gpu_vendor = None
providers = onnxruntime.get_available_providers()
if 'TensorrtExecutionProvider' in providers:

View File

@ -4,6 +4,7 @@ import cv2
import insightface
import roop.globals
from roop.analyser import get_face_single, get_face_many
import onnxruntime
FACE_SWAPPER = None
@ -11,8 +12,15 @@ FACE_SWAPPER = None
def get_face_swapper():
global FACE_SWAPPER
if FACE_SWAPPER is None:
session_options = onnxruntime.SessionOptions()
if roop.globals.gpu_vendor is not None:
session_options.intra_op_num_threads = roop.globals.gpu_threads
session_options.execution_mode = onnxruntime.ExecutionMode.ORT_PARALLEL
else:
session_options.enable_cpu_mem_arena = True
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), '../inswapper_128.onnx')
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.providers)
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.providers, session_options=session_options)
return FACE_SWAPPER

View File

@ -43,13 +43,13 @@ def set_fps(input_path, output_path, fps):
def create_video(video_name, fps, output_dir):
hwaccel_option = '-hwaccel cuda' if roop.globals.gpu == 'nvidia' else ''
hwaccel_option = '-hwaccel cuda' if roop.globals.gpu_vendor == 'nvidia' else ''
output_dir = path(output_dir)
run_ffmpeg(f'{hwaccel_option} -framerate "{fps}" -i "{output_dir}{sep}%04d.png" -c:v libx264 -crf 7 -pix_fmt yuv420p -y "{output_dir}{sep}output.mp4"')
def extract_frames(input_path, output_dir):
hwaccel_option = '-hwaccel cuda' if roop.globals.gpu == 'nvidia' else ''
hwaccel_option = '-hwaccel cuda' if roop.globals.gpu_vendor == 'nvidia' else ''
input_path, output_dir = path(input_path), path(output_dir)
run_ffmpeg(f' {hwaccel_option} -i "{input_path}" "{output_dir}{sep}%04d.png"')