276 lines
10 KiB
Python
Executable File
276 lines
10 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import os
|
|
import sys
|
|
# single thread doubles performance of gpu-mode - needs to be set before torch import
|
|
if any(arg.startswith('--gpu-vendor') for arg in sys.argv):
|
|
os.environ['OMP_NUM_THREADS'] = '1'
|
|
import platform
|
|
import signal
|
|
import shutil
|
|
import glob
|
|
import argparse
|
|
import psutil
|
|
import torch
|
|
import tensorflow
|
|
from pathlib import Path
|
|
import multiprocessing as mp
|
|
from opennsfw2 import predict_video_frames, predict_image
|
|
import cv2
|
|
|
|
import roop.globals
|
|
from roop.swapper import process_video, process_img, process_faces, process_frames
|
|
from roop.utils import is_img, detect_fps, set_fps, create_video, add_audio, extract_frames
|
|
from roop.analyser import get_face_single
|
|
import roop.ui as ui
|
|
|
|
|
|
def handle_parse():
|
|
global args
|
|
signal.signal(signal.SIGINT, lambda signal_number, frame: quit())
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-f', '--face', help='use this face', dest='source_target')
|
|
parser.add_argument('-t', '--target', help='replace this face', dest='target_path')
|
|
parser.add_argument('-o', '--output', help='save output to this file', dest='output_path')
|
|
parser.add_argument('--keep-fps', help='maintain original fps', dest='keep_fps', action='store_true', default=False)
|
|
parser.add_argument('--keep-frames', help='keep frames directory', dest='keep_frames', action='store_true', default=False)
|
|
parser.add_argument('--all-faces', help='swap all faces in frame', dest='all_faces', action='store_true', default=False)
|
|
parser.add_argument('--max-memory', help='maximum amount of RAM in GB to be used', dest='max_memory', type=int)
|
|
parser.add_argument('--cpu-cores', help='number of CPU cores to use', dest='cpu_cores', type=int, default=max(psutil.cpu_count() / 2, 1))
|
|
parser.add_argument('--gpu-threads', help='number of threads to be use for the GPU', dest='gpu_threads', type=int, default=8)
|
|
parser.add_argument('--gpu-vendor', help='choice your GPU vendor', dest='gpu_vendor', choices=['apple', 'amd', 'intel', 'nvidia'])
|
|
|
|
args = parser.parse_known_args()[0]
|
|
|
|
roop.globals.headless = args.source_target or args.target_path or args.output_path
|
|
roop.globals.all_faces = args.all_faces
|
|
|
|
if args.cpu_cores:
|
|
roop.globals.cpu_cores = int(args.cpu_cores)
|
|
|
|
# cpu thread fix for mac
|
|
if sys.platform == 'darwin':
|
|
roop.globals.cpu_cores = 1
|
|
|
|
if args.gpu_threads:
|
|
roop.globals.gpu_threads = int(args.gpu_threads)
|
|
|
|
# gpu thread fix for amd
|
|
if args.gpu_vendor == 'amd':
|
|
roop.globals.gpu_threads = 1
|
|
|
|
if args.gpu_vendor:
|
|
roop.globals.gpu_vendor = args.gpu_vendor
|
|
else:
|
|
roop.globals.providers = ['CPUExecutionProvider']
|
|
|
|
|
|
def limit_resources():
|
|
# prevent tensorflow memory leak
|
|
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
|
|
for gpu in gpus:
|
|
tensorflow.config.experimental.set_memory_growth(gpu, True)
|
|
if args.max_memory:
|
|
memory = args.max_memory * 1024 * 1024 * 1024
|
|
if str(platform.system()).lower() == 'windows':
|
|
import ctypes
|
|
kernel32 = ctypes.windll.kernel32
|
|
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
|
|
else:
|
|
import resource
|
|
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
|
|
|
|
|
|
def pre_check():
|
|
if sys.version_info < (3, 9):
|
|
quit('Python version is not supported - please upgrade to 3.9 or higher')
|
|
if not shutil.which('ffmpeg'):
|
|
quit('ffmpeg is not installed!')
|
|
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), '../inswapper_128.onnx')
|
|
if not os.path.isfile(model_path):
|
|
quit('File "inswapper_128.onnx" does not exist!')
|
|
if roop.globals.gpu_vendor == 'apple':
|
|
if 'CoreMLExecutionProvider' not in roop.globals.providers:
|
|
quit("You are using --gpu=apple flag but CoreML isn't available or properly installed on your system.")
|
|
if roop.globals.gpu_vendor == 'amd':
|
|
if 'ROCMExecutionProvider' not in roop.globals.providers:
|
|
quit("You are using --gpu=amd flag but ROCM isn't available or properly installed on your system.")
|
|
if roop.globals.gpu_vendor == 'nvidia':
|
|
CUDA_VERSION = torch.version.cuda
|
|
CUDNN_VERSION = torch.backends.cudnn.version()
|
|
if not torch.cuda.is_available():
|
|
quit("You are using --gpu=nvidia flag but CUDA isn't available or properly installed on your system.")
|
|
if CUDA_VERSION > '11.8':
|
|
quit(f"CUDA version {CUDA_VERSION} is not supported - please downgrade to 11.8")
|
|
if CUDA_VERSION < '11.4':
|
|
quit(f"CUDA version {CUDA_VERSION} is not supported - please upgrade to 11.8")
|
|
if CUDNN_VERSION < 8220:
|
|
quit(f"CUDNN version {CUDNN_VERSION} is not supported - please upgrade to 8.9.1")
|
|
if CUDNN_VERSION > 8910:
|
|
quit(f"CUDNN version {CUDNN_VERSION} is not supported - please downgrade to 8.9.1")
|
|
|
|
|
|
def get_video_frame(video_path, frame_number = 1):
|
|
cap = cv2.VideoCapture(video_path)
|
|
amount_of_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
|
|
cap.set(cv2.CAP_PROP_POS_FRAMES, min(amount_of_frames, frame_number-1))
|
|
if not cap.isOpened():
|
|
print("Error opening video file")
|
|
return
|
|
ret, frame = cap.read()
|
|
if ret:
|
|
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
cap.release()
|
|
|
|
|
|
def preview_video(video_path):
|
|
cap = cv2.VideoCapture(video_path)
|
|
if not cap.isOpened():
|
|
print("Error opening video file")
|
|
return 0
|
|
amount_of_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
|
|
ret, frame = cap.read()
|
|
if ret:
|
|
frame = get_video_frame(video_path)
|
|
|
|
cap.release()
|
|
return (amount_of_frames, frame)
|
|
|
|
|
|
def status(string):
|
|
value = "Status: " + string
|
|
print(value)
|
|
if not roop.globals.headless:
|
|
ui.update_status_label(value)
|
|
|
|
|
|
def process_video_multi_cores(source_target, frame_paths):
|
|
n = len(frame_paths) // roop.globals.cpu_cores
|
|
if n > 2:
|
|
processes = []
|
|
for i in range(0, len(frame_paths), n):
|
|
p = POOL.apply_async(process_video, args=(source_target, frame_paths[i:i + n],))
|
|
processes.append(p)
|
|
for p in processes:
|
|
p.get()
|
|
POOL.close()
|
|
POOL.join()
|
|
|
|
|
|
def start(preview_callback = None):
|
|
if not args.source_target or not os.path.isfile(args.source_target):
|
|
print("\n[WARNING] Please select an image containing a face.")
|
|
return
|
|
elif not args.target_path or not os.path.isfile(args.target_path):
|
|
print("\n[WARNING] Please select a video/image to swap face in.")
|
|
return
|
|
target_path = args.target_path
|
|
test_face = get_face_single(cv2.imread(args.source_target))
|
|
if not test_face:
|
|
print("\n[WARNING] No face detected in source image. Please try with another one.\n")
|
|
return
|
|
if is_img(target_path):
|
|
if predict_image(target_path) > 0.85:
|
|
quit()
|
|
process_img(args.source_target, target_path, args.output_path)
|
|
status("swap successful!")
|
|
return
|
|
seconds, probabilities = predict_video_frames(video_path=args.target_path, frame_interval=100)
|
|
if any(probability > 0.85 for probability in probabilities):
|
|
quit()
|
|
video_name_full = target_path.split(os.sep)[-1]
|
|
video_name = os.path.splitext(video_name_full)[0]
|
|
output_dir = os.path.dirname(target_path) + os.sep + video_name if os.path.dirname(target_path) else video_name
|
|
Path(output_dir).mkdir(exist_ok=True)
|
|
status("detecting video's FPS...")
|
|
fps, exact_fps = detect_fps(target_path)
|
|
if not args.keep_fps and fps > 30:
|
|
this_path = output_dir + os.sep + video_name + ".mp4"
|
|
set_fps(target_path, this_path, 30)
|
|
target_path, exact_fps = this_path, 30
|
|
else:
|
|
shutil.copy(target_path, output_dir)
|
|
status("extracting frames...")
|
|
extract_frames(target_path, output_dir)
|
|
args.frame_paths = tuple(sorted(
|
|
glob.glob(output_dir + "/*.png"),
|
|
key=lambda x: int(x.split(os.sep)[-1].replace(".png", ""))
|
|
))
|
|
status("swapping in progress...")
|
|
if roop.globals.gpu_vendor is None and roop.globals.cpu_cores > 1:
|
|
global POOL
|
|
POOL = mp.Pool(roop.globals.cpu_cores)
|
|
process_video_multi_cores(args.source_target, args.frame_paths)
|
|
else:
|
|
process_video(args.source_target, args.frame_paths)
|
|
# prevent out of memory while using ffmpeg with cuda
|
|
if args.gpu_vendor == 'nvidia':
|
|
torch.cuda.empty_cache()
|
|
status("creating video...")
|
|
create_video(video_name, exact_fps, output_dir)
|
|
status("adding audio...")
|
|
add_audio(output_dir, target_path, video_name_full, args.keep_frames, args.output_path)
|
|
save_path = args.output_path if args.output_path else output_dir + os.sep + video_name + ".mp4"
|
|
print("\n\nVideo saved as:", save_path, "\n\n")
|
|
status("swap successful!")
|
|
|
|
|
|
def select_face_handler(path: str):
|
|
args.source_target = path
|
|
|
|
|
|
def select_target_handler(path: str):
|
|
args.target_path = path
|
|
return preview_video(args.target_path)
|
|
|
|
|
|
def toggle_all_faces_handler(value: int):
|
|
roop.globals.all_faces = True if value == 1 else False
|
|
|
|
|
|
def toggle_fps_limit_handler(value: int):
|
|
args.keep_fps = int(value != 1)
|
|
|
|
|
|
def toggle_keep_frames_handler(value: int):
|
|
args.keep_frames = value
|
|
|
|
|
|
def save_file_handler(path: str):
|
|
args.output_path = path
|
|
|
|
|
|
def create_test_preview(frame_number):
|
|
return process_faces(
|
|
get_face_single(cv2.imread(args.source_target)),
|
|
get_video_frame(args.target_path, frame_number)
|
|
)
|
|
|
|
|
|
def run():
|
|
global all_faces, keep_frames, limit_fps
|
|
handle_parse()
|
|
pre_check()
|
|
limit_resources()
|
|
if roop.globals.headless:
|
|
start()
|
|
quit()
|
|
window = ui.init(
|
|
{
|
|
'all_faces': roop.globals.all_faces,
|
|
'keep_fps': args.keep_fps,
|
|
'keep_frames': args.keep_frames
|
|
},
|
|
select_face_handler,
|
|
select_target_handler,
|
|
toggle_all_faces_handler,
|
|
toggle_fps_limit_handler,
|
|
toggle_keep_frames_handler,
|
|
save_file_handler,
|
|
start,
|
|
get_video_frame,
|
|
create_test_preview
|
|
)
|
|
window.mainloop()
|