roop/roop/core.py
2023-06-06 00:21:23 +02:00

276 lines
10 KiB
Python
Executable File

#!/usr/bin/env python3
import os
import sys
# single thread doubles performance of gpu-mode - needs to be set before torch import
if any(arg.startswith('--gpu-vendor') for arg in sys.argv):
os.environ['OMP_NUM_THREADS'] = '1'
import platform
import signal
import shutil
import glob
import argparse
import psutil
import torch
import tensorflow
from pathlib import Path
import multiprocessing as mp
from opennsfw2 import predict_video_frames, predict_image
import cv2
import roop.globals
from roop.swapper import process_video, process_img, process_faces, process_frames
from roop.utils import is_img, detect_fps, set_fps, create_video, add_audio, extract_frames
from roop.analyser import get_face_single
import roop.ui as ui
def handle_parse():
global args
signal.signal(signal.SIGINT, lambda signal_number, frame: quit())
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--face', help='use this face', dest='source_target')
parser.add_argument('-t', '--target', help='replace this face', dest='target_path')
parser.add_argument('-o', '--output', help='save output to this file', dest='output_path')
parser.add_argument('--keep-fps', help='maintain original fps', dest='keep_fps', action='store_true', default=False)
parser.add_argument('--keep-frames', help='keep frames directory', dest='keep_frames', action='store_true', default=False)
parser.add_argument('--all-faces', help='swap all faces in frame', dest='all_faces', action='store_true', default=False)
parser.add_argument('--max-memory', help='maximum amount of RAM in GB to be used', dest='max_memory', type=int)
parser.add_argument('--cpu-cores', help='number of CPU cores to use', dest='cpu_cores', type=int, default=max(psutil.cpu_count() / 2, 1))
parser.add_argument('--gpu-threads', help='number of threads to be use for the GPU', dest='gpu_threads', type=int, default=8)
parser.add_argument('--gpu-vendor', help='choice your GPU vendor', dest='gpu_vendor', choices=['apple', 'amd', 'intel', 'nvidia'])
args = parser.parse_known_args()[0]
roop.globals.headless = args.source_target or args.target_path or args.output_path
roop.globals.all_faces = args.all_faces
if args.cpu_cores:
roop.globals.cpu_cores = int(args.cpu_cores)
# cpu thread fix for mac
if sys.platform == 'darwin':
roop.globals.cpu_cores = 1
if args.gpu_threads:
roop.globals.gpu_threads = int(args.gpu_threads)
# gpu thread fix for amd
if args.gpu_vendor == 'amd':
roop.globals.gpu_threads = 1
if args.gpu_vendor:
roop.globals.gpu_vendor = args.gpu_vendor
else:
roop.globals.providers = ['CPUExecutionProvider']
def limit_resources():
# prevent tensorflow memory leak
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tensorflow.config.experimental.set_memory_growth(gpu, True)
if args.max_memory:
memory = args.max_memory * 1024 * 1024 * 1024
if str(platform.system()).lower() == 'windows':
import ctypes
kernel32 = ctypes.windll.kernel32
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
else:
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
def pre_check():
if sys.version_info < (3, 9):
quit('Python version is not supported - please upgrade to 3.9 or higher')
if not shutil.which('ffmpeg'):
quit('ffmpeg is not installed!')
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), '../inswapper_128.onnx')
if not os.path.isfile(model_path):
quit('File "inswapper_128.onnx" does not exist!')
if roop.globals.gpu_vendor == 'apple':
if 'CoreMLExecutionProvider' not in roop.globals.providers:
quit("You are using --gpu=apple flag but CoreML isn't available or properly installed on your system.")
if roop.globals.gpu_vendor == 'amd':
if 'ROCMExecutionProvider' not in roop.globals.providers:
quit("You are using --gpu=amd flag but ROCM isn't available or properly installed on your system.")
if roop.globals.gpu_vendor == 'nvidia':
CUDA_VERSION = torch.version.cuda
CUDNN_VERSION = torch.backends.cudnn.version()
if not torch.cuda.is_available():
quit("You are using --gpu=nvidia flag but CUDA isn't available or properly installed on your system.")
if CUDA_VERSION > '11.8':
quit(f"CUDA version {CUDA_VERSION} is not supported - please downgrade to 11.8")
if CUDA_VERSION < '11.4':
quit(f"CUDA version {CUDA_VERSION} is not supported - please upgrade to 11.8")
if CUDNN_VERSION < 8220:
quit(f"CUDNN version {CUDNN_VERSION} is not supported - please upgrade to 8.9.1")
if CUDNN_VERSION > 8910:
quit(f"CUDNN version {CUDNN_VERSION} is not supported - please downgrade to 8.9.1")
def get_video_frame(video_path, frame_number = 1):
cap = cv2.VideoCapture(video_path)
amount_of_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
cap.set(cv2.CAP_PROP_POS_FRAMES, min(amount_of_frames, frame_number-1))
if not cap.isOpened():
print("Error opening video file")
return
ret, frame = cap.read()
if ret:
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
cap.release()
def preview_video(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error opening video file")
return 0
amount_of_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
ret, frame = cap.read()
if ret:
frame = get_video_frame(video_path)
cap.release()
return (amount_of_frames, frame)
def status(string):
value = "Status: " + string
print(value)
if not roop.globals.headless:
ui.update_status_label(value)
def process_video_multi_cores(source_target, frame_paths):
n = len(frame_paths) // roop.globals.cpu_cores
if n > 2:
processes = []
for i in range(0, len(frame_paths), n):
p = POOL.apply_async(process_video, args=(source_target, frame_paths[i:i + n],))
processes.append(p)
for p in processes:
p.get()
POOL.close()
POOL.join()
def start(preview_callback = None):
if not args.source_target or not os.path.isfile(args.source_target):
print("\n[WARNING] Please select an image containing a face.")
return
elif not args.target_path or not os.path.isfile(args.target_path):
print("\n[WARNING] Please select a video/image to swap face in.")
return
target_path = args.target_path
test_face = get_face_single(cv2.imread(args.source_target))
if not test_face:
print("\n[WARNING] No face detected in source image. Please try with another one.\n")
return
if is_img(target_path):
if predict_image(target_path) > 0.85:
quit()
process_img(args.source_target, target_path, args.output_path)
status("swap successful!")
return
seconds, probabilities = predict_video_frames(video_path=args.target_path, frame_interval=100)
if any(probability > 0.85 for probability in probabilities):
quit()
video_name_full = target_path.split(os.sep)[-1]
video_name = os.path.splitext(video_name_full)[0]
output_dir = os.path.dirname(target_path) + os.sep + video_name if os.path.dirname(target_path) else video_name
Path(output_dir).mkdir(exist_ok=True)
status("detecting video's FPS...")
fps, exact_fps = detect_fps(target_path)
if not args.keep_fps and fps > 30:
this_path = output_dir + os.sep + video_name + ".mp4"
set_fps(target_path, this_path, 30)
target_path, exact_fps = this_path, 30
else:
shutil.copy(target_path, output_dir)
status("extracting frames...")
extract_frames(target_path, output_dir)
args.frame_paths = tuple(sorted(
glob.glob(output_dir + "/*.png"),
key=lambda x: int(x.split(os.sep)[-1].replace(".png", ""))
))
status("swapping in progress...")
if roop.globals.gpu_vendor is None and roop.globals.cpu_cores > 1:
global POOL
POOL = mp.Pool(roop.globals.cpu_cores)
process_video_multi_cores(args.source_target, args.frame_paths)
else:
process_video(args.source_target, args.frame_paths)
# prevent out of memory while using ffmpeg with cuda
if args.gpu_vendor == 'nvidia':
torch.cuda.empty_cache()
status("creating video...")
create_video(video_name, exact_fps, output_dir)
status("adding audio...")
add_audio(output_dir, target_path, video_name_full, args.keep_frames, args.output_path)
save_path = args.output_path if args.output_path else output_dir + os.sep + video_name + ".mp4"
print("\n\nVideo saved as:", save_path, "\n\n")
status("swap successful!")
def select_face_handler(path: str):
args.source_target = path
def select_target_handler(path: str):
args.target_path = path
return preview_video(args.target_path)
def toggle_all_faces_handler(value: int):
roop.globals.all_faces = True if value == 1 else False
def toggle_fps_limit_handler(value: int):
args.keep_fps = int(value != 1)
def toggle_keep_frames_handler(value: int):
args.keep_frames = value
def save_file_handler(path: str):
args.output_path = path
def create_test_preview(frame_number):
return process_faces(
get_face_single(cv2.imread(args.source_target)),
get_video_frame(args.target_path, frame_number)
)
def run():
global all_faces, keep_frames, limit_fps
handle_parse()
pre_check()
limit_resources()
if roop.globals.headless:
start()
quit()
window = ui.init(
{
'all_faces': roop.globals.all_faces,
'keep_fps': args.keep_fps,
'keep_frames': args.keep_frames
},
select_face_handler,
select_target_handler,
toggle_all_faces_handler,
toggle_fps_limit_handler,
toggle_keep_frames_handler,
save_file_handler,
start,
get_video_frame,
create_test_preview
)
window.mainloop()