import os from tqdm import tqdm import cv2 import insightface import core.globals from core.analyser import get_face_single, get_face_many FACE_SWAPPER = None def get_face_swapper(): global FACE_SWAPPER if FACE_SWAPPER is None: model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), '../inswapper_128.onnx') FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=core.globals.providers) return FACE_SWAPPER def swap_face_in_frame(source_face, target_face, frame): if target_face: return get_face_swapper().get(frame, target_face, source_face, paste_back=True) return frame def process_faces(source_face, frame, progress, all_faces=False): if all_faces: many_faces = get_face_many(frame) if many_faces: for face in many_faces: frame = swap_face_in_frame(source_face, face, frame) progress.set_postfix(status='.', refresh=True) else: progress.set_postfix(status='S', refresh=True) else: face = get_face_single(frame) if face: frame = swap_face_in_frame(source_face, face, frame) progress.set_postfix(status='.', refresh=True) else: progress.set_postfix(status='S', refresh=True) return frame def process_video(source_img, frame_paths): source_face = get_face_single(cv2.imread(source_img)) progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]' with tqdm(total=len(frame_paths), desc="Processing", unit="frame", dynamic_ncols=True, bar_format=progress_bar_format) as progress: for frame_path in frame_paths: frame = cv2.imread(frame_path) try: result = process_faces(source_face, frame, progress, core.globals.all_faces) cv2.imwrite(frame_path, result) except Exception: progress.set_postfix(status='E', refresh=True) pass progress.update(1) def process_img(source_img, target_path, output_file): frame = cv2.imread(target_path) face = get_face_single(frame) source_face = get_face_single(cv2.imread(source_img)) result = get_face_swapper().get(frame, face, source_face, paste_back=True) cv2.imwrite(output_file, result) print("\n\nImage saved as:", output_file, "\n\n")